Title

Changing the diameter of 3D printed tissue engineering scaffolds made via melt electrospinning writing

Conference Dates

June 5-9, 2017

Abstract

Introduction. Due to the structural complexity of the natural tissues, a production of anatomically accurate three-dimensional (3D) structures is a major challenge in tissue engineering. Previously a technology termed melt electrospinning writing (MEW), produced 3D constructs out of filaments sized from 0.8 μm up to 140 μm [1-3]. Here the fiber diameter control during MEW printing was investigated. Methods: Poly (ε-caprolactone) (PCL) fibers were printed with a custom-built MEW device [4] at 73 ± 1 °C temperature, 8.5 kV voltage difference and 6 mm distance between the nozzle and the collector. The polymer flowrate was controlled by the air pressure variation between 0.5 and 4 bar. For the different fiber stretching, collector speed was varied from 300 to 10000 mm/min. Results. Fiber diameter could be changed from 2.02±0.57 μm to 49.93±2.61 μm (Figure 1A). Multi-modal 3D printed structures, produced within a single print are shown in Figure 1B-D. Figure 1B demonstrates a grid pattern of 3 μm fibers overlaid with 30 μm fibers. Figure 1C and 1D shows that multidiameter fibers can be precisely stacked and rotated around each other. As an example of a 3D-printed construct, a tapered frame for spheroid capture is shown in Figure 1E; due to the different diameters, this construct has a larger pore size at the top compared to the bottom.

Please click Additional Files below to see the full abstract.

This document is currently not available here.

Share

COinS