Title
FABRICATION OF POROUS, CRYSTALLINE-ORIENTED TITANIA LAYER ON TRANSPARENT ELECTRODE BY MAGNETIC FIELD-ASSISTED EPD
Conference Dates
October 1-6, 2017
Abstract
Dye-sensitized solar cells (DSSCs) are the most extensively investigated systems for the conversion of solar energy into electricity, since it can convert light at longer wavelengths into electricity and can be manufactured using less energy compared to the bulk semiconductor-type cells with a p-n junction. Despite these advantages, DSSC commercialization is still limited because of its low conversion efficiency and low reliability of the liquid electrolyte. The low conversion efficiency is due to the non-uniformity of the electrode components with respect to the packing density of TiO2 particles and film thickness of the electrode. Therefore the research on DSSC in general has been directed toward improving the photo-current and photo-potential. In order to significantly enhance the cell performance, it is important to optimize the photo-anode structure of the DSSC on the basis of its fundamental properties. In this study, crystalline-oriented porous TiO2 thin films were fabricated on indium-tin oxide (ITO) or fluorine-doped tin oxide (FTO) glass substrates by electrophoretic deposition (EPD) in a superconducting magnet.
Please click Additional Files below to see the full abstract.
Recommended Citation
Tetsuo Uchikoshi, Tohru S. Suzuki, Hiroyuki Muto, and Atsunori Matsuda, "FABRICATION OF POROUS, CRYSTALLINE-ORIENTED TITANIA LAYER ON TRANSPARENT ELECTRODE BY MAGNETIC FIELD-ASSISTED EPD" in "Electrophoretic Deposition VI: Fundamentals and Applications", Aldo R. Boccaccini, Institute of Biomaterials, University of Erlangen-Nuremberg, Germany Omer van der Biest, Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Belgium James Dickerson, Consumer Reports, USA Tetsuo Uchikoshi, National Institute for Materials Science, Japan Eds, ECI Symposium Series, (2017). https://dc.engconfintl.org/electrophoretic_vi/50