The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering
CANNOT FIND FILE: date.inc - CANNOT FIND FILE: location.inc
Editors: | CANNOT FIND FILE: editors.inc |
Conference Dates
May 13-17, 2007
Abstract
The local gas velocity and the intensity of the gas turbulence in a gas/solid flow are a required measurement in validating the gas and solids flow structure predicted by computational fluid dynamic (CFD) models in fluid bed and transport reactors. The high concentration and velocities of solids, however, make the use of traditional gas velocity measurement devices such as pitot tubes, hot wire anemometers and other such devices difficult. A method of determining these velocities has been devised at the National Energy Technology Laboratory employing tracer gas. The technique developed measures the time average local axial velocity gas component of a gas/solid flow using an injected tracer gas which induces changes in the heat transfer characteristics of the gas mixture. A small amount of helium is injected upstream a known distance from a self-heated thermistor. The thermistor, protected from the solids by means of a filter, is exposed to gases that are continuously extracted from the flow. Changes in the convective heat transfer characteristics of the gas are indicated by voltage variations across a Wheatstone bridge. When pulsed injections of helium are introduced to the riser flow the change in convective heat transfer coefficient of the gas can be rapidly and accurately determined with this instrument. By knowing the separation distance between the helium injection point and the thermistor extraction location as well as the time delay between injection and detection, the gas velocity can easily be calculated. Variations in the measured gas velocities also allow the turbulence intensity of the gas to be estimated.
Recommended Citation
James Spenik, J. Christopher Ludlow, Rex Compston, and Ronald W. Breault, "Measurement of Gas Velocities in the Presence of Solids in the Riser of a Cold Flow Circulating Fluidized Bed" in "The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering", Franco Berruti, The University of Western Ontario, London, Canada; Xiaotao (Tony) Bi, The University of British Columbia, Vancouver, Canada; Todd Pugsley, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Eds, ECI Symposium Series, (2007). https://dc.engconfintl.org/fluidization_xii/11