Conference Dates
May 16-21, 2010
Abstract
A simplified model has been developed to investigate effects of important operating parameters on performance of an entrained-bed absorber and bubbling-bed regenerator system collecting CO2 from flue gas. The particle population balance was considered together with chemical reaction to determine the extent of conversion in both absorber and regenerator. Effects of several absorber parameters was tested in a laboratory scale process. The CO2 capture efficiency decreased as temperature or gas velocity increased. However, it increased with static bed height or moisture concentration. The CO2 capture efficiency was exponentially proportional to each parameter. Based on the absolute value of exponent of the parameter, the effect of gas velocity, static bed height, and moisture content was a half, one third, and one fourth as strong as that of temperature, respectively.
Recommended Citation
Jeong-Hoo Choi, Chang-Keun Yi, and Sung-Ho Jo, "A MODEL ON AN ENTRAINED BED-BUBBLING BED PROCESS FOR CO2 CAPTURE FROM FLUE GAS" in "The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering", Sang Done Kim,Korea Advanced Institute of Science and Technology, Korea; Yong Kang, Chungnam National University, Korea; Jea Keun Lee, Pukyong National University, Korea; Yong Chil Seo, Yonsei University, Korea Eds, ECI Symposium Series, (2010). https://dc.engconfintl.org/fluidization_xiii/71