Title
Geopolymer-zeolite composites for CO2 adsorption
Conference Dates
May 27-June 1, 2018
Abstract
Geopolymer-zeolite composites were produced mixing different geopolymer matrices with a synthetic commercial Na13X zeolite, to combine the functional microporosity of the zeolite with the mesoporosity of the geopolymer matrix, with the further possibility to consolidate the zeolite powder.
The new materials were designed and produced in forms of monoliths to be used as adsorbents for low temperature CO2 capture applications.
A potassium or sodium silicate activating solution was used to produce the metakaolin-based geopolymer matrices, then mixed with the synthetic zeolite used as a filler. As geopolymers can be regarded as the amorphous counterpart or precursor of crystalline zeolites, it is important to underline the chemical affinity between these two constituents. As a matter of fact, the morphological characterization evidenced the presence of geopolymer nanoprecipitates covering zeolite particles for the K-based composite, while in the Na-based composite the formation of a NaA zeolite phase was evidenced (Fig. 1).
Please click Additional Files below to see the full abstract.
Recommended Citation
Elettra Papa, Valentina Medri, Elena Landi, Patricia Benito, Matteo Minelli, and Angelo Vaccari, "Geopolymer-zeolite composites for CO2 adsorption" in "International Conference on Alkali Activated Materials and Geopolymers: Versatile Materials Offering High Performance and Low Emissions", J. Provis, University of Sheffield C. Leonelli, Univ. of Modena and Reggio Emilia W. Kriven, Univ. of Illinois at Urbana-Champaign A. Boccaccini, Univ. of Erlangen-Nuremberg A. Van Riessen, Curtin University, Australia Eds, ECI Symposium Series, (2018). https://dc.engconfintl.org/geopolymers/26