Title
Metakaolin based geopolymers as soil stabilizers
Conference Dates
May 27-June 1, 2018
Abstract
In many kinds of engineering constructions, wind-swept soils and soft weak soils are often stabilized and strengthened with ordinary Portland cement (OPC) and lime, to increase soil strength and durability. Furthermore, such soil stabilizing can also prevent erosion and dust generation. However, OPC is known to leave an enormous environmental footprint on planet Earth as its production processes are significant energy consumers with high CO2 emissions. Therefore, the development of a novel generation of cements with high durability and environmental sustainability is essential. One of these novel binders is the alkali-activated binder based on aluminosilicates materials as metakaolin or industrials by-products such as fly ash or slags, commonly referred to as geopolymer. It has been found that geopolymers can exhibit high compressive strength and higher chemical and thermal resistance than cement-based materials [1]. Therefore, due to their high strength, low cost, low energy consumption and CO2 emissions, geopolymers offers a promising alternative to OPC [2]. Geopolymers also exhibit excellent adhesion to aggregates [3], therefore it is reasonable to assume that they can serve as an effective soil stabilizer.
Please click Additional Files below to see the full abstract.
Recommended Citation
Dotan Gabber, Gabriela Bar-Nes, Avraham Dody, and Alva Peled, "Metakaolin based geopolymers as soil stabilizers" in "International Conference on Alkali Activated Materials and Geopolymers: Versatile Materials Offering High Performance and Low Emissions", J. Provis, University of Sheffield C. Leonelli, Univ. of Modena and Reggio Emilia W. Kriven, Univ. of Illinois at Urbana-Champaign A. Boccaccini, Univ. of Erlangen-Nuremberg A. Van Riessen, Curtin University, Australia Eds, ECI Symposium Series, (2018). https://dc.engconfintl.org/geopolymers/31