Title
Microfabrication of elastomeric polymers for organ-on-a-chip engineering and injectable tissues
Conference Dates
June 5-9, 2018
Abstract
Recent advances in human pluripotent stem cell (hPSC) biology enable derivation of essentially any cell type in the human body, and development of three-dimensional (3D) tissue models for drug discovery, safety testing, disease modelling and regenerative medicine applications. However, limitations related to cell maturation, vascularization, cellular fidelity and inter-organ communication still remain. Relying on an engineering approach, microfluidics and microfabrication techniques our laboratory has developed new technologies aimed at overcoming them.
Since native heart tissue is unable to regenerate after injury, induced pluripotent stem cells (iPSC) represent a promising source for human cardiomyocytes. Here, biological wire (Biowire) technology will be described, developed to specifically enhance maturation levels of hPSC based cardiac tissues, by controlling tissue geometry and electrical field stimulation regime (Nunes et al Nature Methods 2013). We will describe new applications of the Biowire technology in engineering a specifically atrial and specifically ventricular cardiac tissues, safety testing of small molecule kinase inhibitors, potential new cancer drugs, and modelling of left ventricular hypertrophy using patient derived cells.
Please click Additional Files below to see the full abstract.
Recommended Citation
Milica Radisic, "Microfabrication of elastomeric polymers for organ-on-a-chip engineering and injectable tissues" in "Nanotechnology in Medicine II: Bridging Translational in vitro and in vivo Interfaces", Millicent Sullivan, PhD, University of Delaware, USA Josué Sznitman, Dr. Sc., Technion-Israel Institute of Technology, Israel Lola Eniola-Adefeso, PhD, University of Michigan, USA Srivatsan Kidambi, PhD, University of Nebraska - Lincoln, USA Eds, ECI Symposium Series, (2018). https://dc.engconfintl.org/nanotech_med_ii/47