Conference Dates
June 22-27, 2014
Abstract
The present work developed a three-equation local thermal non-equilibrium model to predict the effective solid-to-fluid heat transfer coefficient in the enhanced geothermal system reservoirs based on the volume averaging method. Due to the high rock-to-fracture size ratio, the solid thermal resistance effect in the internal rocks cannot be neglected in the effective solid-to-fluid heat transfer coefficient. The present three-equation local thermal non-equilibrium model can consider the dynamic variation of the solid thermal resistance in transient heat transfer by introducing the penetration temperature difference. The model was validated by comparison with pore-scale numerical simulations and macro-scale LTNE model numerical simulations. The results show that the three-equation local thermal non-equilibrium model has a high accuracy
Recommended Citation
Xiao-Long Ouyang, Rui-Na Xu, and Pei-Xue Jiang, "Effective solid-to-fluid heat transfer coefficient in EGS reservoirs" in "5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry", Prof. Kambiz Vafai, University of California, Riverside; Prof. Adrian Bejan, Duke University; Prof. Akira Nakayama, Shizuoka University; Prof. Oronzio Manca, Seconda UniversitĂ degli Studi Napoli Eds, ECI Symposium Series, (2014). https://dc.engconfintl.org/porous_media_V/13