Conference Dates
June 16-21, 2019
Abstract
Europe is committed to have a bio-based economy in 2030. It follows that a huge contribution of biorefinery products on the European demand for chemicals, energy, materials and fibers is expected in the near future. To be environmentally and economically sustainable, biorefinery will need to be flexible, versatile, energy and cost efficient [1]. In a lignocellulose based biorefinery, the sugar platform that leads to bioethanol and added-value products through biochemical processes represents a challenging option. After ethanol distillation a lignin reach residue (LRR) is produced and used as energy source. However, it is currently underutilized with about 60% more lignin generated than is needed to meet the internal energy use [2, 3]. The exploitation of this residue for the combined production of biofuels and added value chemicals and materials represents a key factor for the increase of the efficiency of the overall ethanol production chain and its valorization is mandatory for the viability of future biorefinery operations.
Please click Additional Files below to see the full abstract.
Recommended Citation
Paola Giudicianni, Corinna Maria Grottola, and Raffaele Ragucci, "Slow pyrolysis of lignin rich residue from lignocellulosic biorefining operations" in "Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes", Franco Berruti, ICFAR, Western University, Canada Anthony Dufour, CNRS Nancy, France Wolter Prins, University of Ghent, Belgium Manuel Garcia-Pérez, Washington State University, USA Eds, ECI Symposium Series, (2019). https://dc.engconfintl.org/pyroliq_2019/15