Title
Why nanofibers are a good adsorptive surface – fundamental understanding and industrial applications for mAb bioprocessing
Conference Dates
March 5-10, 2017
Abstract
Over the years, chromatography has proven to be a powerful and versatile technique for the purification of high value biotherapeutics. Yet, today’s preparative chromatography of biologics still, in principle, looks the same as it did several decades ago. Any improvements made have been incremental; constrained by the stationary phase format (porous beads), associated column size (bed height and pressure drop), and historical modes of operation. To address future manufacturing challenges such as high cost of goods, diversity in product portfolios, market dynamics and manufacturing flexibility, new, more radical approaches to the development of chromatography materials and towards associated modes of operations are needed.
With the biotechnology industry maturing, wide spread adoption of new high tech tools/products such as high throughput analytics, automated process control, single use materials and real time data analysis is already taking place, which in turn will lead towards revisiting and a subsequent improvement of how chromatography will be operated in the future. Examples of such improvements that are already considered include high productivity operations such as simulated moving bed and rapid, or extreme, cycling regimes.
Please click Additional Files below to see the full abstract.
Recommended Citation
Karol Lacki, Ian Scanlon, Oliver Hardick, Will Lewis, and Daniel G. Bracewell, "Why nanofibers are a good adsorptive surface – fundamental understanding and industrial applications for mAb bioprocessing" in "Separations Technology IX: New Frontiers in Media, Techniques, and Technologies", Kamalesh K. Sirkar, New Jersey Institute of Technology, USA Steven M. Crame, Rensselaer Polytechnic Institute, USA João G. Crespo, LAQV-Requimte, FCT-Universidade Nova de Lisboa, Caparica, Portugal Marco Mazzotti, ETH Zurich, Switzerland Eds, ECI Symposium Series, (2017). https://dc.engconfintl.org/separations_technology_ix/46