Title
PS-PVD thermal/environmental barrier coatings with novel microstructures
Conference Dates
June 24-29, 2018
Abstract
Plasma spray physical vapor deposition (PS-PVD) technology has attracted increasing attention due to it promising potential in processing advanced functional coatings such as thermal/environmental barrier coatings (TBCs) by flexibly tailoring the coating microstructure architecture in a broad range. In this work, yttria stabilized zirconia (YSZ) TBCs with a novel quasi-columnar structure was prepared by co-deposition of vapor phase and nano-clusters using PS-PVD and the associated deposition mechanism was discussed. The thermo-physical and mechanical properties, sintering resistance and thermal shock life of the coating were investigated. The thermal conductivity is in a range of 0.7~1.0 W/mk between 200 °C and 1200 °C and the average life is ~4000 cycles during thermal shock testing in which the coating surface was heated to 1200 °C within 20 s and held at the temperature for 5 min by gas flame. Noted that the quasi-columnar TBC revealed much better resistance to glassy CaO-MgO-Al2O3-SiO2 (CMAS) adsorption than those TBCs produced by air plasma spray (APS) and electron beam physical vapor deposition (EB-PVD) and some attempts were made to understand the related mechanisms.
Ytterbium silicate/mullite/Si environmental barrier coatings (EBCs) were sprayed onto SiC ceramic matrix composites (CMC) by PS-PVD. The dense ytterbium silicate coating deposited at 65 kw is mainly composed of ytterbium disilicate resulting from vapor-phase deposition, whereas the layered coating at 40 kw is mainly ytterbium monosilicate from liquid deposition.
Recommended Citation
Hui Peng, Hongbo Guo, Liangliang Wei, Jie Xiao, Huibin Xu, and Shengkai Gong, "PS-PVD thermal/environmental barrier coatings with novel microstructures" in "Thermal Barrier Coatings V", Prof. Dr. Robert Vaßen, Forschungszentrum Jülich GmbH, Germany Brian Hazel, Pratt & Whitney, USA Prof. Dr. Uwe Schulz, German Aerospace Center, Germany Dr. Michael J. Maloney, Pratt & Whitney, USA Dr. Ram Darolia, GE Aviation (Retired), USA Eds, ECI Symposium Series, (2018). https://dc.engconfintl.org/tbcv/76