Conference Dates
May 16-21, 2010
Abstract
The aim of the present work is to establish a model of heat transfer between particles by using the numerical simulation that can be incorporated in the discrete element method (DEM). The contact heat transfer between particles can be regarded as a contact thermal resistance problem. In the thermal resistance model, the local characteristics, e.g. exact contact area and heat flux distribution on particle surface, are important. However, it is difficult to measure such factors in detail. Accordingly, the authors utilized a numerical simulation. The thermal resistance was modeled by placing a small solid block between the contacting areas in the simulation. The small solid thickness represents the surface roughness and the width represents the contact force. The simulated temperature profile along the center line through two particle’s centers well agreed with measured one.
Recommended Citation
Azri bin Alias; Kuwagi K., Bin Mokhtar M.A. Takami T.; and Horio M., "NUMERICAL EXPERIMENT ON EFFECT OF SURFACE ROUGHNESS FOR HEAT AND FLOW AROUND TWO CONTACTING PARTICLES" in "The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering", Sang Done Kim,Korea Advanced Institute of Science and Technology, Korea; Yong Kang, Chungnam National University, Korea; Jea Keun Lee, Pukyong National University, Korea; Yong Chil Seo, Yonsei University, Korea Eds, ECI Symposium Series, (2010). https://dc.engconfintl.org/fluidization_xiii/80