Title
Mechanism of thermal field and electric field in resistive random access memory using the high/low-k side wall structure
Conference Dates
May 19-23, 2019
Abstract
In the Internet of things (IoT) era, low power consumption memory will be a critical issue for further device development. Among many kinds of next-generation memories, resistive random access memory (RRAM) is considered as having the most potential due to its high performance. To prevent unrecoverable hard break-down of a RRAM device, the RRAM should be collocated with a transistor for external current compliance. With decreasing device cell size, however, the operating voltage of the transistor will become smaller and smaller. Previous study has determined that the forming voltage of RRAM increases when device cell size is reduced, which is a very crucial issue especially when the device is scaled down. We have proposed a high-k sidewall spacer structure in RRAM to solve the dilemma of increasing forming voltages for device cell scaling down. Based on the COMSOL-simulated electrical field distributions in the high-k RRAM. In addition, thermal conductivity of sidewall spacer influenced resistive switching behavior. Suitable thermal conductivity of sidewall materials can enhance resistive switching behavior.
Please click Additional Files below to see the full abstract.
Recommended Citation
Yi-Ting Tseng, Ting-Chang Chang, Chih-Cheng Shih, and Po-Hsun Chen, "Mechanism of thermal field and electric field in resistive random access memory using the high/low-k side wall structure" in "Semiconductor Technology for Ultra Large Scale Integrated Circuits and Thin Film Transistors VII (ULSIC VS TFT 7)", Yue Kuo, Texas A&M University, USA Junichi Murota, Tohoku University, Japan Yukiharu Uraoka, Nara Advanced Institute of Science and Technology, Japan Yasuhiro Fukunaka, Kyoto University, Japan Eds, ECI Symposium Series, (2019). https://dc.engconfintl.org/ulsic_tft_vii/10